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Abstract--We describe a method of correcting both 

random and systematic timebase errors using measurements 
of two quadrature sinusoids made simultaneously with a 
waveform of interest.  We estimate the fundamental limits to 
our procedure due to additive noise and sampler jitter and 
demonstrate the procedure with some actual measurements.  
 

Index Terms--jitter, sampling oscilloscope, timebase 
distortion, waveform metrology, comb generator 

I. INTRODUCTION 

High-speed sampling oscilloscopes suffer from 
systematic timebase distortion (TBD) and random jitter that 
cause errors in the time in a waveform at which samples are 
acquired.   We propose an alternative timebase, for use with 
conventional sampling oscilloscopes, that greatly reduces 
both TBD and jitter. The new timebase relies upon 
simultaneous measurement of the signal of interest, and two 
reference sinusoids (in quadrature) that serve to determine 
the actual time at which the measurement was performed 
[1]. The conventional timebase of the oscilloscope is used 
to characterize distortion in the two reference sinusoids, and 
to determine within which half-cycle of the auxiliary 
sinusoids the signal was measured.  The new timebase is 
estimated from the sinusoids using a weighted “error in 
variables” approach that accounts for relative contributions 
of additive noise and timing error. 

Sampling oscilloscopes that have a form of jitter 
correction based on quadrature sinusoidal reference signals 
are described elsewhere in the literature[2], and sampling 
oscilloscopes with similar functionality have recently 
become commercially available[3, 4].  Our implementation 
achieves the best aspects of these systems simultaneously, 
including a residual jitter of less than 200 fs, correction of 
time records with nearly arbitrary length, and it applies to 
signals at almost any frequency.  Furthermore, our method 
is inexpensive, since it can be implemented with an older 

                                                                 
P. D. Hale is with the Optoelectronics Division, National 

Institute of Standards and Technology, Boulder, CO, 80305 USA (e-mail: 
hale@boulder.nist.gov). 

C. M. Wang is with the Statistical Engineering Division, 
National Institute of Standards and Technology, Boulder, CO, 80305 USA. 

D. F. Williams, K. A. Remley, and J. Wepman are with the 
Electromagnetic Technology Division, National Institute of Standards and 
Technology, Boulder, CO, 80305 USA. 

Publication of the U. S. Government, not subject to U.S. 
copyright. 
 

generation of standard equipment.  Our method corrects for 
both random jitter and systematic timebase distortion and 
provides the user with an estimate of the residual timing 
error after the correction process has been applied. Also our 
technique is nonproprietary and is described and 
characterized here, for the first time, in the open archival 
literature.  

In an oscilloscope the timing error at the ith 
sample, yi, is the sum of the systematic TBD, hi, and 
random timing jitter error τi.  Thus the ith sample of the 
signal of interest g, as a function of time, is given by 
 ( ) ,i i i i iy g T h τ ε= + + +  (1) 

where ( 1)i sT i T= − is the target time of each sample, Ts is 

the target time interval between samples, and εi is additive 
noise.  We assume the jitter and additive noise are 
independent zero-mean random variables with variances 

2
τσ  and 2

εσ .  
The problem of estimating jitter and correcting for 

its effects has been addressed by many authors [5,6, 7,8, 9].  
The typical approach is to obtain the signal variance of 
independent, repeated measurements and use the 
approximate model [10] 

 ( ) ( )( )22 2var τ εσ σ′≈ +i iy g t  (2) 

to solve for 2
τσ .  Here ( )′ ig t is the derivative of the ideal 

signal evaluated at i i it T h= + .  It is usually assumed that, 
upon averaging, the jitter acts as a low-pass filter so that the 
average signal is the convolution of the ideal signal 

( )ig t and the probability density function ( )ip  of the jitter:  

 ( ) ( ) ( ) .i ig t g t p dτ τ τ= −∫  (3) 

The effects of jitter are then removed by deconvolution [5]. 
 This approach has the following problems:  

a) Measurements must be repeated to find the 
measurement mean and variance.  

b)  Estimates of the jitter variance from (2) are 
generally biased (for example, see [9]). 

c) ( )ip  must be known. 

d)  ( )ip  must be the same over the entire measured 

waveform. 
e)  The averaging process removes some of the 

inherent bandwidth from the measured signal, 
making the deconvolution subjective[11, 12].   
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f) Deconvolution is an “ill-posed” problem [12], so 
that in the presence of noise there is no unique 
solution.   
Generally, it is desirable to avoid deconvolution, 

particularly in cases where the jitter is  large, varies over the 
measurement time window, or has a non-Gaussian 
probability density.  All these situations make deconvolving 
the jitter from (3) problematic. 

The problem of estimating TBD has also been 
studied by many authors [13- 20].  Recent work [ 17- 20]   
has used a nonlinear least-squares approach that fits 
multiple measured sinusoids with multiple phases and 
frequencies to a distorted sinusoid model.  This approach 
performs well at discontinuities in the TBD and allows 
simultaneous estimation of the harmonic distortion, if any, 
in the measured sinusoids.  The distorted-sinusoid model, 
with harmonic number nh, is given by [18] 

 
( )

( )
1

cos 2

sin 2 ,

hn

ij j jk j ij
k

jk j i j ij

y kf t

kf t

α β π

γ π ε
=

= + 

+ +

∑
 (4) 

where jf  is the fundamental frequency of the jth measured 

waveform yij at the ith nominal time, ij i i ijt T h τ= + + . The 

random jitter is τij and εij is random additive noise.  The 
values of jα , jkβ , jkγ , and ih  can be estimated, by use of 

a weighted least-squares approach [18].   To obtain a 
solution using this approach, we typically measure a set of 
sinusoidal waveforms at two or three different frequencies.  
Each set includes two sinusoids, of a given frequency, that 
are approximately in quadrature.  Hence, each set can have 
up to four or six waveforms .  When estimating TBD we 
generally average over several measurement sets to reduce 
the uncertainty due to random jitter and additive noise.   
 In the present work, however, we are interested in 
the total timebase error, i.e. the sum of the TBD and the 
jitter.  We use all of the information in the sinusoid to find 
the distortion (that is, we estimate jα , jkβ , and jkγ ) and the 

timebase ( ih and ijτ ) simultaneously so that the measured 

dependent variable (yij) best corresponds to the values of the 
distorted reference sinusoids with the new timebase.   In 
this case, no averaging is involved. 

A simple illustration is shown in Fig. 1, which 
plots uncorrected measurements (circles at time iT ) of a 
reference sinusoid with an estimate of the distorted sinusoid 
(solid curve). The estimated sinusoid is found by 
minimizing the average “distance” between the samples and 
the sinusoid.  If we assume, for illustrative purposes, that 
there is no additive noise, we can estimate the total time 
error due to timebase distortion and jitter by drawing a 
horizontal line between each measurement (circles) and the 
distorted sinusoid.  The length of each line represents the 
difference between the nominal (oscilloscope) time at 
which the measurement was taken and the time as 
determined by the distorted sinusoidal fit.  The time that 
each line intersects the distorted sinusoid is the corrected 
time for each sample.  Once the timebase error is known, it 
can be applied to a simultaneously measured signal of 
interest if the timing errors of the simultaneous 
measurements are sufficiently correlated. 

II. SYSTEM FOR MEASURING AND CORRECTING  TIMEBASE 
ERRORS 

 
 Fig. 2 shows a generalized schematic of the signal 

generator and sampling system for correcting timebase 
errors.  The reference oscillator generates a sinusoid with 
frequency f.  The waveform generator and trigger generator 
are synchronized to the reference oscillator.  

We take advantage of the parallel design of many 
equivalent-time sampling oscilloscopes.  In such an  
oscilloscope, the sampling process proceeds as follows 
[21,15]: (a) the timebase is armed to trigger on a rising or 
falling edge at a certain level, (b) a pulse with the desired 

Time 
Figure 1.  Circles show sampled signal using distorted 
and jittered oscilloscope timebase and the solid curve 
shows the estimated distorted sinusoid.  Horizontal 
lines show difference between the time estimated fro m 
the curve and the nominal oscilloscope timebase. 
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Figure 2.  Schematic diagram of generic system used 
to measure and correct oscilloscope timebase errors.   
The reference generator, waveform generator, and 
trigger generator are synchronized. Various sources of 
jitter are labeled as τ(•).  
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characteristics is sent into the trigger input, triggering the 
timebase, (c) the timebase (delay generator) waits for a 
predefined time  delay, and then (d) the timebase generates a 
drive (strobe) pulse that is split and sent simultaneously to 
all the samplers in the oscilloscope mainframe. A 
waveform is sampled by incrementing the time delay by a 
nominal increment Ts and repeating the process.  A result of 
the parallel architecture is that any jitter on the trigger pulse 
or the timebase delay generator is common to the sampling 
time of all the samplers in the oscilloscope mainframe.   

In Fig. 2, we show the sources of jitter, measured 
relative to an absolute reference oscillator.  They include 

(1)τ  and (2)τ , which are the jitter of the reference signals.  

We expect that these have the same statistical properties 
(mean of 0 and standard deviation (1) (2 )σ σ= ), although 
their individual realizations for the ith sample will differ.  
The value of (3)τ  is the jitter of the generated waveform we 
want to measure and has mean 0 and standard deviation 

(3)σ .  The value of (tr)τ  is the jitter of the trigger generator 

and timebase generator circuit and has mean 0 and standard 
deviation (tr)σ .  We also include a jitter ( )1, 2,3Sx xτ = for 

the actual sampling process for each of the samplers, with 
mean 0 and standard deviation (S1) (S2) (S3)σ σ σ; ; .  

When the samplers are simultaneously fired from 
the same trigger event, the different jitter components 
contribute to the sampled signals as follows: 

 

( ) ( )
( ) ( )
( ) ( )

(1) (S1) (tr)
1 1

(2) (S2) (tr)
2 2

(3) (S3) (tr)
3 3 .

i i i i i i

i i i i i i

i i i i i i

S t S T h

S t S T h

S t S T h

τ τ τ

τ τ τ

τ τ τ

= + + + +

= + + + +

= + + + +

 (5) 

We note that ih  and (tr)
iτ  are common to all the 

simultaneously sampled waveforms.  Hence, if (tr) ( )xσ σ?  
and (tr) ( S )xσ σ?  (x=1, 2, 3), (tr)

iτ  is the dominant source of 

jitter and we can approximate τij as (tr)
iτ .  Furthermore, if 

we can estimate ih  and (tr)
iτ  from the known sinusoidal 

signals ( )1 iS t  and ( )2 iS t , we can apply our estimate to the 

third waveform, ( )3 iS t , and compensate for timing errors 

in its measurement.   

III. ESTIMATING RANDOM JITTER 

 
Our approach to estimating the timing errors in (4) 

is to apply the so called errors-in-variables [22] or 
orthogonal distance regression (ODR) [23] to the model in 
(4). In this approach, the distorted sinusoid model is fit to 
the data with the assumption that both “dependent” (yi) and 
“independent” (tij) variables are subject to errors.  
Specifically, let yi1 and yi2 be the ith samples of nearly 
quadrature sinusoids measured simultaneously with the 
signal of interest.  Denote the total timing error 
as ij i ijhδ τ= + , 1, 2j = . Then 1iδ  and 2iδ  are the timing 

errors of the two sinusoid measurements.  Because the 
strobe pulse drives all the samplers nearly simultaneously, 

as described in the previous section, we assume equal 
timing errors in channels 1 and 2.  That is , we assume  

1 2i i iτ τ τ= = , and hence i ij i ihδ δ τ= = +  and 

i ij i it t T δ= = + .   We rewrite ijy , given in (4), as a function 

F of ( )1 1, ,
h hj j j jn j jnθ α β β γ γ= … …   as 

 ( ); .ij i i j ijy F T δ θ ε= + +  

 Estimates of timing errors iδ are readily available 
from the ODR fit of the model using ODRPACK [23].  The 
ODR procedure obtains the best-fit model for this problem 
by minimizing   
 

( )

( ) ( )( ){ }

2 2 2
1 2 1 2

1

2 2 2
1 1 2 2

1

( , , )

; ;

n

i i i i
i

n

i i i i i i i
i

E w w

w F T y F T y w

ε δ

ε δ

θ θ δ ε ε δ

δ θ δ θ δ

=

=

= + +

= + − + + − +      

∑

∑
 
with respect to 1θ , 2θ , and { }, 1,...,i i nδ = , where n is the 

number of samples.  The relative weight for errors ε  and 
δ , is denoted by w w wε δ= and the timing error estimate 

is optimized when 2 2w τ εσ σ=  [23]. 

This ODR approach works well for most of the 
data we observe in our laboratory and requires only two 
nearly quadrature sinusoids.  There are instances, however, 
where the ODR approach produces unsatisfactory results.  
This is the case, for example, when the waveform is very 
long or there are only a few samples per cycle of the 
sinusoid.  In such cases, we use an estimate of the TBD as 
an initial guess for the total timebase error to help the ODR 
routine converge to a solution. This  initial TBD estimate 
requires additional measurements of quadrature sinusoids at 
different frequencies.  These additional measurements need 
not be made simultaneously with the signal of interest. 

IV.  SIMULATION STUDIES 

 
Additive noise on the reference sinusoids can be a 

source of error in any time -base error correction.  From   (2) 
we see that the frequency f of the sinusoid g(t) should be 

chosen such that  ( )( )22 2g tτ εσ σ′ ?  over most of the 

sinusoid.  That is, to achieve good discrimination between 
jitter noise and additive noise, the slew rate must be high 
enough so that the jitter noise becomes the dominant noise 
process for most of the sinusoid.  For our sinusoid, we 

require ( )22 22 fAτ εσ π σ? , where A is the amplitude of the 

sine wave. 
 We can estimate the root-mean-square (RMS) 

residual error σ ∆%  due to additive noise, in the limit of zero 

jitter, as ( ) ( )12 f Aεσ π σ−

∆ =% .  For a 10 GHz sinusoid and 

( )100 0.1%Aεσ = , 0.016psσ ∆ =% .  We expect the 

proposed method will achieve lower residual timing error 
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because optimum weighting is used to account for the 
presence of both jitter and additive noise.  

We used simulation to investigate the proposed 
method for estimating the timing error and the fundamental 
limits imposed by additive noise.  The criterion used in the 
comparisons is  the amount of timing error remaining in a 
waveform of interest after both random and systematic 
timebase errors were corrected using the estimation 
procedure. 

Recall that 
 .ij i i ijt T h τ= + +  

With estimates (denoted by ^) of the TBD, îh , and jitter, îjτ , 

obtained by the estimation procedure, the best estimate of 

ijt is then given by 

 ˆˆ ˆ .ij i i ijt T h τ= + +  

The remaining timing errors can be characterized by the 
standard deviation, σ ∆ , of  

 ( )ˆˆ ˆ ,ij ij i j i i j i i jt t h hτ τ∆ = − = + − +  

where ih  and ijτ are the actual TBD and jitter used in the 

simulation.  
We generated sinusoids according to (4) to 

simulate actual measurements. The simulation parameters 
used here, including TBD, are closely related to those we 
observe in our laboratory.  We used a time -measurement 
window (waveform epoch) of 52 ns with 53248 samples.  
Since the TBD is large for this long time record, we 
estimated TBD and used it as an initial guess for the total 
time error. We generated 100 sets of 6 sinusoids, including 
0° and 90° phases at three different frequencies.  The signal 
frequencies and amplitudes are given in Table 1, along with 
the amplitude of the harmonics (nh=3). In each simulation 
experiment, the additive noise ijε  was generated using a 

normal distribution with mean 0 and standard deviation τσ . 

The random jitter ijτ  was generated using a normal 

distribution with mean 0 and standard deviation εσ .  We 

also saved the nominal realization of ijτ  for the purpose of 

calculating i j∆ andσ ∆ .  

 Table 2 displays the mean value of σ ∆ (from the 

100 simulations) of the 10 GHz 0° sinusoids for each of the 
combinations of εσ  and τσ  used in the simulation 

experiments, with the standard deviation of σ ∆  from the 
100 simulations in parentheses.  Table 2 shows that our 

procedure is effective for correcting the timing errors even 
in the presence of additive noise. The additive noise has a 
relatively large effect on the residual jitter, while the 
original jitter has a relatively small effect, as shown by the 
similar values in each row of Table 2.  Using the optimum 
weighting allows us to achieve residual timing errors that 
are comparable to or below the simple estimate σ ∆%  
described at the beginning of this section. The small 
standard deviations in the simulations show that the 
algorithm gives results that are repeatable to within a few 
femtoseconds. 

We plot one of the simulated 10 GHz 0° sinusoids 
with and without correcting the timing errors in Fig. 3.  The 
long waveform (520 periods in our simulated experiments) 

Table 2.  Simulated residual timing errors, σ ∆  (in 
picoseconds), along with standard deviation of the 
simulation (in parentheses) as a function of additive noise 
and random jitter standard deviations εσ  and τσ .  
Simulation conditions are described in Section IV.  The 
relative weights are 2 2w τ εσ σ= , except when 0τσ = , 

where 510w −= . 

σ ∆ , ps 

τσ , ps εσ , % of 
amplitude 0ps  1.6 ps 3.2 ps 6.4 ps 

0.009 0.020 0.021 0.022 
0.1 

(0.000) (0.003) (0.004) (0.003) 
0.091 0.161 0.165 0.187 

1 
(0.000) (0.001) (0.003) (0.011) 
0.456 0.747 0.789 0.806 

5 
(0.001) (0.002) (0.002) (0.003) 

 

Table 1. Amplitude of fundamental and harmonics used in 
the simulation study  

Harmonic amplitude, V Fundamental 
frequency, 

GHz Fundamental Second 
harmonic 

Third 
harmonic 

10.0000 0.150 0.0006 0.007 
  9.8855 0.150 0.0006 0.007 
10.2855 0.150 0.0002 0.0003 

 

Figure 3.  Plot of one of the 52 ns long 10 GHz 0° 
sinusoids with (light dots) and without (black dots) 
correcting timing errors. See text for explanation. 
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is shown as a series of overlapping short waveforms (2 
periods in this example), similar to an eye pattern. The 
widely scattering points are the sinusoid generated with 

3.2 psτσ = and 1%εσ =  of the amplitude. The overlaying 
(lightly shaded) points are the sinusoid after correction for 
timebase errors.  It is clear from Fig. 3 that after correction, 
the errors have been collapsed to such a small level that 
they can not be resolved on this scale. 

We next  consider the effects of using the incorrect 
harmonic order in the estimation procedure. In general, the 
harmonic distortion that is not accounted for will have the 
same effect as having an inflated additive noise, with the 
magnitude of the effect depending on the magnitude of the 
distortion that is  not accounted for.  For example, if we 
simulate the actual nominal signal with 3.2 psτσ = , 

1%εσ = , but 5hn = , and with the amplitudes of the actual 
4th and the 5th harmonics equal to those of the 2nd and the 
3rd, while we use only three harmonic terms to correct the 
timing errors, the mean value of σ ∆  (for 100 simulations) is 
found to be 1.167 ps, a substantial increase from the mean 
of 0.165 ps (given in Table 2).  However, if harmonic 
distortion in the 4th and the 5th is  negligible we do not see 
a substantial increase. For example, if the amplitudes of the 
4th harmonic for all three frequencies are all 0.1 mV, and 
the amplitudes of the 5th harmonic of the three frequencies 
are 0.7 mV, 0.7 mV, and 0.1 mV, then the resulting mean 
value of σ ∆  is  only 0.196 ps.  It is therefore necessary to 
have some knowledge of the number of harmonics, nh, to 
include in the distorted sinusoid model of (4), as was done 
in [18].  

V. EXPERIMENTAL STUDY 

In this section we describe experiments that verify 
our compensation technique.   We also provide example 
measurements where timebase correction is particularly 
important, including cases with large jitter or long time 
windows where TBD can give significant errors.   

A. Experimental Study 1: A single sinusoid 
We tested the assumption, that the trigger and 

timebase generator are the dominant sources of jitter 
( (tr) ( S )xσ σ? ), which is necessary for this method to be 
useful, by measuring an “unknown” sinusoid (on sampler 3 
of Fig. 2) that was split from the 10 GHz reference signal 
generator using a 3 dB splitter. The other output of the 
splitter was further split in a hybrid coupler to provide 0°  
and 90°  reference signals to samplers 1 and 2 of Fig. 2. 
The reference signals were provided by the clock output of 
a digital pattern generator and the oscilloscope was 
triggered at 1/16 of the clock frequency using the trigger 
output of the pattern generator. After measuring 50 sets of 
these 3 sinusoids, we changed the reference frequency to 
the others listed in Table 1 and measured 50 sets of 0°  and 
90° sinusoids at those frequencies as well.   Using the jitter 
estimation software in the oscilloscope, we estimated the 
jitter of the uncorrected measurement to have standard 

deviation of about 3.3 ps.  From a separate measurement, 
with no input to samplers 1 and 2, we found the RMS 
additive noise was about 0.3% of the reference signal 
amplitude. 

Because the sinusoid to be corrected and the 
reference signals are derived from the same source, we 
expect that the jitter errors (1)

iτ , (2)
iτ , and the jitter error 

(3)
iτ  of the “unknown” sinusoid are highly correlated and, 

therefore, nearly equal.  Hence, we expect this experiment 
to be insensitive to these parameters, with the remaining 
jitter being predominantly due to the jitter ( )1, 2,3Sx xτ =  

in the samplers. 
We estimated the timing errors in this exp eriment 

using nh=3  and used measurements at all three frequencies 
to calculate the TBD as an initial guess for the ODR 
routine. Figure 4 shows a section of five of the 10 GHz 
sinusoids measured by the third sampler before (bottom) 
and after (top) correction for timebase errors.  The 
uncorrected measurement has a discontinuity at 4 ns, due to 
timebase distortion, and the random noise is large where the 
slope is large, indicating significant jitter in the 
measurement. The corrected sinusoids have the 
discontinuity removed and exhibit noise that is  greatly 
reduced and evenly distributed in time.   Note that the 
waveforms shown in Fig. 4 have not been averaged. 

We cannot use the procedure described in Section 
IV to evaluate the residual timing error because, for 
experimental data, both ih  and ijτ  are unknown.  If the 

waveforms of interest are sinusoidal, however, we can use 
the ODR procedure [23] to obtain an estimate of the 
residual timing error after correction.  This is obtained from 
a sum of squares of the residuals of the ODR fit in the 
“independent” ( ijt ) variable. The mean of the 50 standard 

Figure 4.  Portion of  five sinusoids measured on 
sampler 3 before (bottom) and after (top) correction for 
time-base errors.  The offset between the curves has 
been added for clarity. 
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deviations of the residuals in ît  obtained from the ODR fit 

to the sinusoids measured in sampler 3 was found to be 0.2 
ps.  Thus, our experimental results show a jitter 
considerably larger than the numerical results of Table 2, 
and we can conclude that the jitter ( S )xτ  of the samplers is 
not negligible but is still much smaller than the original 
jitter in the measurement.  We estimated the jitter of one of 
the samplers, using the estimated limit of 0.051 ps from 

Table 2, as 2 20.2 0.021 2 0.14 ps− = , giving an 

estimated fundamental limit to our timebase correction.  We 
divide by 2  to reflect the simplification that the residual 
sampler jitter is evenly distributed between sampler 3 and 

the sampler that is predominantly used as the reference 
signal for any given sample.   

B. Experimental Study 2: Fast transient with jitter 
In some measurement situations, jitter may blur 

details of a fast transient event, such as the output of a 
comb generator used for calibrating various high-speed 
measurement equipment.  To demonstrate our timebase 
correction in this application, we used a 6 GHz signal 
generator to drive a nonlinear transmission line (NLTL) .  
The NLTL was configured to steepen the falling edge of the 
generated sinusoid, giving a fast transient with a 6 GHz 
repetition rate.  The output of the signal generator was split 
between a countdown trigger generator, used to trigger the 
oscilloscope, the NLTL, and a hybrid coupler whose 
outputs were used as the reference signals on samplers 1 
and 2.  The measured transient from the NLTL has roughly 
a 9 ps fall time. 

By changing the trigger level of the oscilloscope 
we can change the root mean square (rms) jitter from about 
1.4 ps to more than 8.6 ps (as measured by the 
oscilloscope).  Additive nois e on the reference signals was 
about 0.4% of the sinusoid amplitude. Figure 5 shows 50 
measurements of the waveform generated by the NLTL 
before averaging (black dots) and after averaging (noisy 
gray line) for the case where the rms jitter is 8.6 ps.  The 
light smooth curve in Fig. 5 is the result of the following 
correction and averaging procedure: (a) each of the 50 
waveforms was corrected for timebase errors, (b) each 
corrected waveform was linearly interpolated back to the 
original evenly spaced time grid, and (c) the resulting 
curves were averaged.  This estimated waveform has much 
less noise but has ripple, ringing, and sharp features that are 
blurred in the corresponding average of the uncorrected 
measurements.   

   Figure 6 shows an expanded view of the 
waveform after applying our procedure, with three different 

Figure 6.  Comparison of some corrected and averaged measurements.  Measurements with initial jitter of 1.4 ps and 
3.0 ps are indistinguishable on this scale, while the measurement with initial jitter of 8.6 ps shows differences as large 
as 1.4 ps at some times. 
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timebase-corrected and averaged measurement (smooth 
light line). 
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initial values of jitter.  Notice that the curves lie nearly on 
top of each other.  Because the ringing and ripple are 
accurately represented in each reconstructed waveform, 
these features are not artifacts of the signal processing, as 
might be expected with some kinds of regularized 
noncausal deconvolution [11].   

 Closer inspection of the curves in Fig. 6 shows 
systematic time differences in the curves that increase with 
initial jitter, but  are still substantially less than the initial 
jitter.  The two lowest jitter curves typically agree to within  
100 fs, while the lowest and highest jitter cases differ by as 
much as 1.1 ps at some times.  The cause of the systematic 
difference between the high and low jitter cases is unknown 
at this time.  The calculated fall times (10-90% of peak-to-
peak transition durations) of all four cases are 
indistinguishable.  

Because we do not have an analytic expression for 
the fast transient, we cannot use the ODR approach to 
estimate the residual timing error in its measurement after 
correction. To estimate the residual jitter in the transient 
measurement we used (2) on the corrected and linearly 
interpolated waveforms.  Interpolation to a uniform grid 
allows us to estimate the variance and derivative at a given 
time, as is needed in (2).  The results of our estimate are 
shown in Table 3.  We observe that the results for the 
experiments with most similar initial jitter (3.2 ps in 
sinusoidal experiment, 3.0 ps in NLTL experiment) are in 
good agreement; both have 0.2 ps residual jitter after 
correction and include the same amount of error from 
sampler jitter.  Table 3 also shows that the resulting residual 
jitter is only weakly dependent on the initial jitter, as 
expected from the simulations in Section IV, and that the 
algorithm can improve a high jitter measurement by as 
much as 34× (from 8.6 ps to 0.25 ps). 

VI. DEMONSTRATION PROGRAM 

 
Our program for post-processing acquired 

waveforms for timebase correction has a graphical user 
interface. The program is available at 
http://www.boulder.nist.gov/div815/HSM_Project/HSMP.h
tm. 

VII. CONCLUSION 

We have shown how to simultaneously estimate 
the systematic and random timebase errors of measured 
sinusoidal reference signals. Using the parallel 
(simultaneous) sampling in our oscilloscope allows us to 

use this estimate to correct the timebase errors in a 
simultaneously measured waveform by roughly a factor of 
10, effectively replacing the timebase of the oscilloscope 
with a timebase provided by the measured sinusoids.  We 
require only that the oscilloscope timebase have enough 
accuracy to allow us to discriminate between consecutive 
cycles of the clock signal.  This allows us to correct the 
timing errors that might be present with long waveforms or 
large jitter, and lowers the noise floor significantly in most 
measurements without averaging.   In addition to the 
examples described in this paper, we have also 
demonstrated clear reduction of effects due to random jitter 
and timebase distortion in measurements of 10 Gbit/s data 
sequences that are 52 ns (53248 samples) long and 
multisine signals that are 500 ns (40960 samples) long. 
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